Abstract

Insulator is an important equipment of power transmission line. Insulator icing can seriously affect the stable operation of power transmission line. So insulator icing condition monitoring has great significance of the safety and stability of power system. Therefore, this paper proposes a lightweight intelligent recognition method of insulator icing thickness for front-end ice monitoring device. In this method, the residual network (ResNet) and feature pyramid network (FPN) are fused to construct a multi-scale feature extraction network framework, so that the shallow features and deep features are fused to reduce the information loss and improve the target detection accuracy. Then, the full convolution neural network (FCN) is used to classify and regress the iced insulator, so as to realize the high-precision identification of icing thickness. Finally, the proposed method is compressed by model quantization to reduce the size and parameters of the model for adapting the icing monitoring terminal with limited computing resources, and the performance of the method is verified and compared with other classical method on the edge intelligent chip.

Highlights

  • The importance of safe and stable operation of power grid to the development of the national economy is self-evident

  • Considering that the actual transmission line icing usually faces various bad weather conditions, and different transmission line terrain and environment will lead to a variety of scene changes, such as strong wind, heavy rain and other scenes, the icing images collected by the actual icing monitoring system show the characteristics of complex background, low resolution and polymorphism

  • The sample library constructed in this paper contains more than 4,000 insulator icing monitoring image

Read more

Summary

Introduction

The importance of safe and stable operation of power grid to the development of the national economy is self-evident. Due to the vast territory, diverse climate, complex terrain and other factors, power grids in China are often damaged by various natural disasters, resulting in large-scale power outages. Severe icing may lead to the distortion of insulator potential distribution, flashover of insulator, line trip and outage, which brings great challenges to the safe and stable operation of power grid. In 2008, the south of China suffered extremely serious ice disaster, Insulator Icing Thickness Identification Method which led to a large area of ice flashover of insulators in many transmission lines and substations, resulting in a series of serious accidents such as tripping and equipment damage (Tiannan and Dongxiao, 2016; Wang et al, 2021). It is urgent to carry out insulator icing perception research to guide the production, operation and maintenance, find and eliminate hidden dangers in time, so as to improve the safety and stability of the power grid operation (Wei and Caifei, 2019; Li et al, 2021)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call