Abstract
Edge intelligence (EI) is becoming one of the research hotspots among researchers, which is believed to help empower intelligent transportation systems (ITS). ITS generates a large amount of data at the network edge by millions of devices and sensors. Data-driven artificial intelligence (AI) is at the core of ITS development. By pushing the AI frontier to the network edge, EI enables ITS AI applications to have lower latency, higher security, less pressure on the backbone network and better use edge big data. This paper surveys Edge Intelligence in Intelligent Transportation Systems. We first introduce the challenges ITS faces and explain the motivation of using EI in ITS. We then explore the framework of using EI in ITS, including the EI-based ITS architecture, the data gathering and communication methods, the data processing and service delivery, and the performance indexes. The enabling technologies, such as AI models, the Internet of Things, and Edge Computing technologies used in EI-based ITS, are reviewed intensively. We discuss the edge intelligence applications and research fields in ITS in depth. Typical application scenarios, such as autonomous driving, vehicular edge computing, intelligent vehicular transportation system, unmanned aerial vehicle (UAV) in ITS environment, and rail transportation control and management, are explored. The general platforms of EI, the EI training and inference in ITS, as well as the benchmark datasets, are introduced. Finally, we discuss some of the challenges and future directions of using EI in ITS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.