Abstract
The distribution of charge carriers in metal halide perovskites draws strong interest from the solar cell community, with experiments demonstrating that edges of various microstructures can improve material performance. This is rather surprising because edges and grain boundaries are often viewed as the main source of charge traps. We demonstrate by ab initio quantum dynamics simulations that edges of the CH3NH3PbBr3 perovskite create shallow trap states that mix well with the valence and conduction bands of the bulk and therefore support mobile charge carriers. Charges are steered to the edges energetically, facilitating dissociation of photo-generated excitons into free carriers. The edge-driven charge separation extends carrier lifetimes because of decreased overlap of the electron and hole wave functions, which leads to reduction of the nonadiabatic coupling responsible for nonradiative electron-hole recombination. Reduction of spatial symmetry near the edges activates additional vibrational modes that accelerate coherence loss within the electronic subsystem, further extending carrier lifetimes. Enhanced atomic motions at edges increase fluctuations of edge energy levels, enhancing mixing with band states and improving charge mobility. The simulations contribute to the atomistic understanding of the unusual properties of metal halide perovskites, generating the fundamental knowledge needed to design high-performance optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.