Abstract
We study weighted graphs and their "edge ideals" which are ideals in polynomial rings that are defined in terms of the graphs. We provide combinatorial descriptions of m-irreducible decompositions for the edge ideal of a weighted graph in terms of the combinatorics of "weighted vertex covers". We use these, for instance, to say when these ideals are m-unmixed. We explicitly describe which weighted cycles, suspensions, and trees are unmixed and which ones are Cohen–Macaulay, and we prove that all weighted complete graphs are Cohen–Macaulay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.