Abstract

Let $chi_{gl}(G)$ be the {it{group choice number}} of $G$. A graph $G$ is called {it{edge-$k$-group choosable}} if its line graph is $k$-group choosable. The {it{group-choice index}} of $G$, $chi'_{gl}(G)$, is the smallest $k$ such that $G$ is edge-$k$-group choosable, that is, $chi'_{gl}(G)$ is the group chice number of the line graph of $G$, $chi_{gl}(ell(G))$. It is proved that, if $G$ is an outerplanar graph with maximum degree $D<5$, or if $G$ is a $({K_2}^c+(K_1 cup K_2))$-minor-free graph, then $chi'_{gl}(G)leq D(G)+1$. As a straightforward consequence, every $K_{2,3}$-minor-free graph $G$ or every $K_4$-minor-free graph $G$ is edge-$(D(G)+1)$-group choosable. Moreover, it is proved that if $G$ is an outerplanar graph with maximum degree $Dgeq 5$, then $chi'_{gl}(G)leq D$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call