Abstract
AbstractEndowed with rich terminal groups, good electrical conductivity, and controllable structure, transition metal carbides/nitrides (MXenes) have attracted extensive attention for potential application in gas sensor, but long‐standing challenges of the MXenes (titanium carbide as the representative) are their limited selectivity and sensitivity. Herein, a high‐active double transition‐metal titanium molybdenum carbide (Mo2TiC2Tx) with superstrong surface adsorption (−3.12 eV) for NO2 gas molecule is proposed, and it is further coupled with molybdenum disulfide (MoS2) by interface modulation to construct an edge‐enriched heterostructure. Due to the synergistic effect of strong adsorption, rich adsorption sites, and coupling interface of Mo2TiC2Tx/MoS2 composite, the as‐fabricated Mo2TiC2Tx/MoS2 gas sensor exhibits an outstanding response toward NO2 with high selectivity against various interference gases, which is well supported by density functional theory calculations. Meanwhile, the sensor exhibits a sensitivity of 7.36% ppm−1, detection limit of 2.5 ppb, and reversibility at room temperature. A portable, wireless NO2 monitoring system is demonstrated for gas leakage searching and dangerous warning based on Mo2TiC2Tx/MoS2 gas sensor. This work facilitates the gas sensing application of MXenes, and provides an avenue for the development of wireless sensing system in environmental monitoring and safety assurance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.