Abstract

In this work we investigate in detail, the different regimes of the pioneering work of Chklovskii et al. [1], which provides an analytical description to model the electrostatics at the edges of a two-dimensional electron gas. We take into account full electrostatics and calculate the charge distribution by solving the 3D Poisson equation self-consistently. The Chklovskii formalism is reintroduced and is employed to determine the widths of the incompressible edge-states also considering the spin degree of freedom. It is shown that, the odd integer filling fractions cannot exist for large magnetic field intervals if many-body effects are neglected. We explicitly show that, the incompressible strips which are narrower than the quantum mechanical length scales vanish. We numerically and analytically show that, the non-self-consistent picture becomes inadequate considering realistic Hall bar geometries, predicting large incompressible strips. The details of this picture are investigated considering device properties together with the many-body and the disorder effects. Moreover, we provide semi-empirical formulas to estimate realistic density distributions for different physical boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.