Abstract

Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60–100 m, and 5 m within the riparian forest), and time of the year (February–November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct – yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.

Highlights

  • Braided gravel-bed rivers are widespread in temperate piedmont and mountainvalleys [1]

  • We found a total of 308 beetle species that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest

  • The island-braided section which extends to 1.5 km width, contains a spatially complex and temporally dynamic habitat mosaic dominated by extensive areas of exposed river sediments [25]

Read more

Summary

Introduction

Braided gravel-bed rivers are widespread in temperate piedmont and mountainvalleys [1] In their pristine state, they consist of complex mosaics of aquatic and terrestrial habitats created through frequent flow and flood pulses [2]. Ecotones control the spatio-temporal distribution and dynamics of many species [5, 8] This can be attributed to so-called edge effects. Edge effects include any environmental attribute that is altered as a result of being at, or in proximity to the border between two habitats. They can be abiotic changes and changes to behavior or ecological processes [9, 10]. The effect of interactive boundaries and the associated edge effects on species density and richness remains a subject of debate [10,11,12,13,14,15]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call