Abstract

A subgraph of an edge-coloured complete graph is called rainbow if all its edges have different colours. The study of rainbow decompositions has a long history, going back to the work of Euler on Latin squares. We discuss three problems about decomposing complete graphs into rainbow trees: the Brualdi-Hollingsworth Conjecture, Constantine's Conjecture, and the Kaneko-Kano-Suzuki Conjecture. The main result which we discuss is that in every proper edge-colouring of Kn there are 10−6n edge-disjoint isomorphic spanning rainbow trees. This simultaneously improves the best known bounds on all these conjectures. Using our method it is also possible to show that every properly (n−1)-edge-coloured Kn has n/9 edge-disjoint spanning rainbow trees, giving a further improvement on the Brualdi-Hollingsworth Conjecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.