Abstract

Directed networks are ubiquitous and are necessary to represent complex systems with asymmetric interactions--from food webs to the World Wide Web. Despite the importance of edge direction for detecting local and community structure, it has been disregarded in studying a basic type of global diversity in networks: the tendency of nodes with similar numbers of edges to connect. This tendency, called assortativity, affects crucial structural and dynamic properties of real-world networks, such as error tolerance or epidemic spreading. Here we demonstrate that edge direction has profound effects on assortativity. We define a set of four directed assortativity measures and assign statistical significance by comparison to randomized networks. We apply these measures to three network classes--online/social networks, food webs, and word-adjacency networks. Our measures (i) reveal patterns common to each class, (ii) separate networks that have been previously classified together, and (iii) expose limitations of several existing theoretical models. We reject the standard classification of directed networks as purely assortative or disassortative. Many display a class-specific mixture, likely reflecting functional or historical constraints, contingencies, and forces guiding the system's evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.