Abstract
Current mini-LED backlights improve high-dynamic-range liquid crystal displays (LCDs) by using tens of thousands of direct-lit sources for local dimming. However, relative thick profile and high power consumption are the inherent limitations while compared with edge-lit backlights. By synthesizing edge- and direct-lit advantages, we propose a novel hybrid mini-LED backlight equipped with a specially designed integrated light guiding plate (LGP) for large-area displays. This LGP is seamlessly spliced by multiple physically segmented sub-LGPs with a scattering dot array on the bottom and U-shaped grooves at the corners. Each sub-LGP is a single local dimming zone that can be independently controlled. Scattering dot distribution can be numerically calculated even from multiple edge-lit sources. High optical performance and satisfactory local dimming effect are verified and analyzed via both simulation and experiment. The experimental spatial illuminance uniformity and the light extraction efficiency reach 81% and 83% while the crosstalk can be well suppressed below 0.2% between adjacent local dimming zones. The significant advantages of our design towards state-of-the-art mini-LED backlights include the zero optical distance for an ultra-thin profile, low mini-LED amount for local dimming, high optical efficiency, and infinite extension of zone number, which is expected to have a broad application prospect in the near future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.