Abstract

Recent results in retinal research have shown that ganglion cell receptive fields cover the mammalian retina in a mosaic arrangement, with insignificant amounts of overlap in the central fovea. This means that the biological relevance of traditional and widely adapted edge-detection algorithms with convolution-based overlapping operator architectures has been disproved. However, using traditional filters with non-overlapping operator architectures leads to considerable losses in contour information. This paper introduces a novel, tremor- and drift-based edge-detection algorithm that reconciles these differences between the physiology of the retina and the overlapping architectures used by today’s widely adapted algorithms. The algorithm takes into consideration data convergence, as well as the dynamic properties of the retina, by incorporating a model of involuntary eye tremors and drifts and the impulse responses of ganglion cells. Based on the evaluation of the model, two hypotheses are formulated on the highly debated role of involuntary eye tremors: 1) The role of involuntary eye movements has information theoretical implications 2) From an information processing point of view, the functional role of involuntary eye movements extends to more than just the maintenance of action potentials. Involuntary eye-movements may be responsible for the compensation of information losses caused by a non-overlapping receptive field architecture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call