Abstract
Edge detection is a major step in several computer vision applications. Edges define the shape of objects to be used in a recognition system, for example. In this work, we introduce an approach to edge detection inspired by a challenge for artists: the Speed Drawing Challenge. In this challenge, a person is asked to draw the same figure in different times (as 10[Formula: see text]min, 1[Formula: see text]min and 10[Formula: see text]s); at each time, different levels of details are drawn by the artist. In a short time stamp, just the major elements remain. This work proposes a new approach for producing images with different amounts of edges representing different levels of relevance. Our method uses superpixel to suppress image details, followed by Globalized Probability of Boundary (gPb) and Canny edge detection algorithms to create an image containing different number of edges. After that, an edge analysis step detects whose edges are the most relevant for the scene. The results are presented for the BSDS500 dataset and they are compared to other edge and contour detection algorithms by quantitative and qualitative means with very satisfactory results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.