Abstract

In many fishes, prey capture is guided primarily by vision. In the paddlefish, the electrosense can completely substitute for the visual system to detect tiny daphnia, their primary prey. Electroreceptors are distributed over the entire rostrum, head, and gill covers, and there are no accessory structures like a lens to form an image. To accurately locate planktonic prey in three-dimensional space, the poor spatial resolving power of peripheral receptors has to be improved by another mechanism. We have investigated information processing in the electrosensory system of the paddlefish at hind- and midbrain levels by recording single cells extracellularly. We stimulated with a linear array of electrodes that simulated a moving dipole field. In addition, global electric fields were applied to simulate the temporal component of a moving dipole only. Some stimulation were done with sinusoidal fields. The fire rate of cells in the hindbrain followed the first derivative of the stimulus wave form. In contrast, the response of tectal cells were similar to the third derivative. This improves spatial resolution and receptive fields of tectal units are much smaller than the ones of hind brain units. The principle is similar to a Laplacian of Gaussian filter that is commonly used in digital image processing. However, instead of working in the space domain, the paddlefish edge detection filter works in the time domain, thus eliminating the need for extensive interconnections in an array of topographically organized neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.