Abstract

In this paper edge-deletion problems are studied with a new perspective. In general an edge-deletion problem is of the form: Given a graph G, does it have a subgraph H obtained by deleting zero or more edges such that H satisfies a polynomial-time verifiable property? This paper restricts attention to first-order expressible properties. If the property is expressed by π, which in prenex normal form is Q(Φ) where Q is the quantifier-prefix, then we prove results on the quantifier structure that characterize the complexity of the edge-deletion problem. In particular we give polynomial-time algorithms for problems for which Q is ‘simple’ and in other cases we encode certain NP-complete problems as edge-deletion problems, essentially using the quantifier structure of π. We also present evidence that Q alone cannot capture the complexity of the edge-deletion problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.