Abstract

There are no known efficient algorithms to calculate distance in the one-skeleta of associahedra, a problem that is equivalent to finding rotation distance between rooted binary trees or the flip distance between polygonal triangulations. One measure of the difference between trees is the number of conflicting edge pairs, and a natural way of trying to find short paths is to minimize successively this number of conflicting edge pairs using flip operations in the corresponding triangulations. We describe examples that show that the number of such conflicts does not always decrease along geodesics. Thus, a greedy algorithm that always chooses a transformation that reduces conflicts will not produce a geodesic in all cases. Further, for any specified amount, there are examples of pairs of all large sizes showing that the number of conflicts can increase by that amount along any geodesic between the pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call