Abstract

With the emergence of intelligent manufacturing, new-generation information technologies such as big data and artificial intelligence are rapidly integrating with the manufacturing industry. One of the primary applications is to assist manufacturing plants in predicting product quality. Traditional predictive models primarily focus on establishing high-precision classification or regression models, with less emphasis on imbalanced data. This is a specific but common scenario in practical industrial environments concerning quality prediction. A SMOTE-XGboost quality prediction active control method based on joint optimization hyperparameters is proposed to address the problem of imbalanced data classification in product quality prediction. In addition, edge computing technology is introduced to address issues in industrial manufacturing, such as the large bandwidth load and resource limitations associated with traditional cloud computing models. Finally, the practicality and effectiveness of the proposed method are validated through a case study of the brake disc production line. Experimental results indicate that the proposed method outperforms other classification methods in brake disc quality prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call