Abstract

The global trend of increasing life expectancy introduces new challenges with far-reaching implications. Among these, the risk of falls among older adults is particularly significant, affecting individual health and the quality of life, and placing an additional burden on healthcare systems. Existing fall detection systems often have limitations, including delays due to continuous server communication, high false-positive rates, low adoption rates due to wearability and comfort issues, and high costs. In response to these challenges, this work presents a reliable, wearable, and cost-effective fall detection system. The proposed system consists of a fit-for-purpose device, with an embedded algorithm and an Inertial Measurement Unit (IMU), enabling real-time fall detection. The algorithm combines a Threshold-Based Algorithm (TBA) and a neural network with low number of parameters based on a Transformer architecture. This system demonstrates notable performance with 95.29% accuracy, 93.68% specificity, and 96.66% sensitivity, while only using a 0.38% of the trainable parameters used by the other approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.