Abstract

Next-generation cellular networks are expected to provide users with innovative gigabits and terabits per second speeds and achieve ultra-high reliability, availability, and ultra-low latency. The requirements of such networks are the main challenges that can be handled using a range of recent technologies, including multi-access edge computing (MEC), artificial intelligence (AI), millimeter-wave communications (mmWave), and software-defined networking. Many aspects and design challenges associated with the MEC-based 5G/6G networks should be solved to ensure the required quality of service (QoS). This article considers developing a complex MEC structure for fifth and sixth-generation (5G/6G) cellular networks. Furthermore, we propose a seamless migration technique for complex edge computing structures. The developed migration scheme enables services to adapt to the required load on the radio channels. The proposed algorithm is analyzed for various use cases, and a test bench has been developed to emulate the operator’s infrastructure. The obtained results are introduced and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.