Abstract

In this study, we propose a novel CLAHE-based nighttime image contrast enhancement approach for vehicle detection under nighttime conditions, which improves the contrast of low-quality nighttime images while preventing over-enhancement by employing the image dehazing technique. To implement and evaluate our proposed contrast enhancement method on nighttime images, we consider a scenario of using a camera-based Internet of Things (IoT)-edge computing device for traffic and road surveillance. Edge-computing and IoT technology enable significant amounts of novel studies to advance traffic system monitoring, sensing, control, and management. Considering multiple metrics of image enhancement quality, the proposed nighttime image contrast enhancement method outperforms some existing well-performing CLAHE-based methods. To provide accurate vehicle detection under nighttime conditions and different challenges, including vehicle overlapping, low-light conditions, camera vibrations, and image distortion, must be addressed. For this purpose, a deep neural network based on YOLOv5 architecture has been designed and trained using our custom-labeled dataset. The developed neural network is proven to be effective in the detection of different vehicles under low-light ambient conditions using video captured from a stationary camera. Experiments on our dataset show that the proposed contrast enhancement method greatly improves the detection performance of the trained YOLOv5 model under low-environment-light conditions compared with the model trained using unenhanced images. The model trained with enhanced images can provide an improvement of 5.7% on F1 score, 6.3% on mAP <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{0.5,}$</tex-math> </inline-formula> and 3.4% on mAP <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{0.5:0.95} $</tex-math> </inline-formula> under specific conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.