Abstract

The power efficiency of photovoltaic (PV) modules is highly correlated with their health status. Under dynamically changing environments, PV defects could spontaneously form and develop into fatal faults during the daily operation of PV power plants. To facilitate defect detection with less human intervention, a nondestructive, contactless, and automatical visual inspection system with the help of unmanned aerial vehicles and edge computing is proposed in this article. During the processing of the incoming data stream, the system may collect some new, unknown, and unlabeled defects that have not been identified yet in the existing database. To distinguish them from the existing ones, a deep embedded restricted cluster algorithm is designed to identify the unknown and unlabeled PV module defects in an unsupervised manner. Limited by the resources of edge devices and the availability of images of PV defects for training, we developed an online solution combined with deep learning, data argumentation, and transfer learning to properly address the issues of running resource-hungry applications on edge devices and lack of training samples faced by the deep learning approaches used in the field. In addition, pointwise convolution layers are introduced into the network to reduce the parameters and the size of the model. With the reduction of the network depth of the deep convolutional neural network model and the features transferred from the learned defects, the resource consumption of our proposed approach is significantly reduced, and thus can be used on a wide range of edge devices to complete defect detection in a timely manner with high accuracy. The experimental results clearly demonstrate the practicality and effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call