Abstract

The wrinkling instabilities of a stretched rectangular thin film subjected to in-plane bending are investigated within the framework of the linearised Donnell-von Karman bifurcation equation for thin plates. One of our principal objectives is to assess the role played by the finite bending stiffness of the film on the linear wrinkling mechanism. To this end, we employ a non-homogeneous linear pre-bifurcation solution and cast the corresponding eigenvalue problem as a singularly-perturbed differential equation with variable coefficients. Numerical simulations of this problem reveal the existence of two different regimes for the behaviour of the lowest eigenvalue. Based on this observation, a WKB analysis is carried out in order to capture the dependence of the critical wrinkling load on the wavelength of the localised oscillatory buckling pattern and the stiffness of the elastic film. The validity of the analytical results is corroborated by independent numerical computations of the eigenvalues using the method of compound matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.