Abstract

This paper focuses on the problem of mean square consensus for stochastic multi-agent systems. A new asynchronous edge-based dynamic event-triggered control protocol based on directed edges is designed. Using this event-triggered control protocol can reduce the frequency of event-triggered, save communication resources and avoid Zeno behavior. Since events on different edges occur independently of each other, there is no need for clock synchronization among neighbors. Besides, we relax the constraints on the communication topology of multi-agent systems by limiting it only to a weight-balanced digraph containing a directed spanning tree. In addition, the stochastic multi-agent systems can reach mean square consensus exponentially. Finally, this paper illustrates the effectiveness of the proposed asynchronous edge-based dynamic event-triggered control protocol by a simulation example.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call