Abstract

In today’s Higher Education System (HES), Smart Learning (SL), also known as Intelligent Learning (IL) or Adaptive Learning (AL), plays an increasingly vital role. No longer is the traditional, one-size-fits-all method of education suitable for filling the several demands of students. Using SL technologies powered by Artificial Intelligence (AI) and Machine Learning (ML) algorithms can potentially revolutionize the HES. An emerging area of study, edge-based SL helps use Edge Computing (EC) to provide learners with instantaneous, specialized, and context-aware learning. Internet of Things (IoT) devices are becoming increasingly well-liked, and data is proliferating. Using video data as a primary source of learning content and delivering it via EC infrastructure is what is referred to as “Video Streaming (VS)” in Edge-Based Learning (EBL). By examining the importance of providing mobile video clients with a high-quality visual experience—especially considering that video streaming (VS) traffic makes up a significant amount of mobile network traffic—the research gap is filled. The proposed Content Delivery Scheme (CDS), which is based on long short-term memory, is intended to improve security and privacy protocols, accelerate network service response times, and increase application intelligence. The project intends to close the current gap in edge-based Smart Learning (SL) technologies, namely in the distribution of video material for adaptive learning in higher education, by concentrating on these elements. Given that VS traffic forms a considerable portion of mobile network traffic, this paper aims to investigate the significance of delivering a performing visual experience to mobile video clients. Fast network service response, enhanced application intelligence, and enhanced security and privacy are all made possible by the proposed LSTM-based Content Delivery Scheme (CDS). The proposed approach attains minimal stall time of 2347 ms, which outperforms the existing techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.