Abstract
Recently, smart intersections have emerged as a novel intelligent transportation system (ITS) solution that integrates traffic monitoring, optimal signal control, and even traffic safety. Although smart intersections have been prevalent in many cities, there are a few drawbacks in their practical operations. First, there are inevitable delays in transmitting and processing the video data. Second, there is still a need to develop a real-time signal control method leveraging the acquired data from smart intersections. Thus, this study aims to construct edge AI-based smart intersections and to provide their application for traffic signal coordination. To this end, we install smart intersections on three consecutive intersections of Route 45 in Pyeongtaek city, South Korea. The real-time traffic data are collected by an edge AI video analysis model which is compressed and optimized for its operation in on-site edge devices. The optimized model maintains a similar level of accuracy (93.64%), even if the size is reduced by 97.8% compared to the original. Next, we utilize the LT2 model to treat the coordination failure problem in nonpeak hours occurring unnecessary delays of the side-streets with relatively high demands. We complement some constraint conditions in order to consider the compatibility with the current legacy system. The experiment is conducted on a virtual environment of which geometry and traffic demand are configured based on the features of the study site. The numerical results conclude that the optimal offsets calculated by the LT2 model effectively manage bandwidths for multidirectional flows based on the real-time traffic demands collected from the edge AI-based smart intersections. This study contributes to serve high-resolution real-time traffic data using edge AI on smart intersections and to provide a case study for signal coordination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.