Abstract

The existing mixed-criticality (MC) real-time task models assume that once any high-criticality task overruns, all high-criticality jobs execute up to their most pessimistic WCET estimations simultaneously in a one-shot manner. This is very pessimistic in the sense of unnecessary resource overbooking. In this paper, we propose a more generalized mixed-critical real-time task model, called flexible MC model with multiple-shot transitions (FMC-MST), to address this problem. In FMC-MST, high-criticality tasks can transit multiple intermediate levels to handle less pessimistic overruns independently and to nonuniformly scale the deadline on each level. We develop a run-time schedulability analysis for FMC-MST under EDF-VD scheduling, in which a better tradeoff between the penalties of low-criticality tasks and the overruns of high-criticality tasks is achieved to improve the service quality of low-criticality tasks. We also develop a resource optimization technique to find resource-efficient level-insertion configurations for FMC-MST task systems under MC timing constraints. Experiments demonstrate the effectiveness of FMC-MST compared with the state-of-the-art techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.