Abstract

This article introduces an innovative teaching and learning tool called "Edelman Gamblegrams" that aims to help medical learners better understand disorders related to water/plasma tonicity homeostasis, i.e., hyponatremia and hypernatremia. Gamblegrams, named after physician James L. Gamble, are bar diagrams displaying the relative abundance of extracellular anions and cations and are commonly used in the analysis of acid-base disorders. The Edelman equation represents the physiological variables that determine plasma sodium concentration, namely, total body sodium mass, total body potassium mass, and total body water volume. Edelman Gamblegrams inspired by traditional Gamblegrams but using the components of the Edelman equation, visually demonstrate how sodium, potassium, and water contribute to plasma sodium concentration under normal and pathological conditions. Scenarios that lead to hypotonic hyponatremia and hypernatremia in Edelman Gamblegrams are also discussed. Furthermore, examples of how these visual aids can enhance understanding of the pathogenesis of dysnatremias are also presented. Overall, the use of Edelman Gamblegrams has the potential to improve comprehension and retention of concepts related to water/plasma tonicity homeostasis.NEW & NOTEWORTHY This article introduces a new teaching tool called "Edelman Gamblegrams," modeled after the conventional Gamblegrams used in acid-base disorder analysis and using the independent physiological variables that determine the plasma sodium concentration (Edelman equation), that aims to help medical learners understand disorders related to water/plasma tonicity homeostasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call