Abstract
ObjectiveDespite advances, analysis and interpretation of EEG still essentially rely on visual inspection by a super-specialized physician. Considering the vast amount of data that composes the EEG, much of the detail inevitably escapes ordinary human scrutiny. Significant information may not be evident and is missed, and misinterpretation remains a serious problem. Can we develop an artificial intelligence system to accurately and efficiently classify EEG and even reveal novel information? In this study, deep learning techniques and, in particular, Convolutional Neural Networks, have been used to develop a model (which we have named eDeeplepsy) for distinguishing different brain states in children with epilepsy. MethodsA novel EEG database from a homogenous pediatric population with epileptic spasms beyond infancy was constituted by epileptologists, representing a particularly intriguing seizure type and challenging EEG. The analysis was performed on such samples from long-term video-EEG recordings, previously coded as images showing how different parts of the epileptic brain are distinctly activated during varying states within and around this seizure type. ResultsResults show that not only could eDeeplepsy differentiate ictal from interictal states but also discriminate brain activity between spasms within a cluster from activity away from clusters, usually undifferentiated by visual inspection. Accuracies between 86 % and 94 % were obtained for the proposed use cases. SignificanceWe present a model for computer-assisted discrimination that can consistently detect subtle differences in the various brain states of children with epileptic spasms, and which can be used in other settings in epilepsy with the purpose of reducing workload and discrepancies or misinterpretations. The research also reveals previously undisclosed information that allows for a better understanding of the pathophysiology and evolving characteristics of this particular seizure type. It does so by documenting a different state (interspasms) that indicates a potentially non-standard signal with distinctive epileptogenicity at that period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.