Abstract

Abstract Motivated by satellite altimeter observations of enhanced sea level variability near steep topographic slopes in the Southern Ocean, effects of topography on the spatial distribution of mesoscale eddies and on eddy–mean flow interaction are investigated using a two-layer, wind-forced, quasigeostrophic channel model. The principal topography, a zonal ridge with a zonal modulation of ridge height and width, is an idealized version of a segment of the Southeast Indian Ridge along the path of the Antarctic Circumpolar Current. Geosat altimeter observations in this region suggest that spatial variations of eddy energy are related to alongstream modulations of ridge morphology. The time-mean flow and distribution of time-dependent eddies in the model are sensitive to relatively subtle alongstream variations of topography. Topographic steering leads to alongstream variations of time-mean baroclinic and barotropic shear and to alongstream variations in the meridional position of the jet relative to the c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.