Abstract

Episodic eddy-driven upwelling may supply a significant fraction of the nutrients required to sustain primary productivity of the subtropical ocean. New observations in the northwest Atlantic reveal that, although plankton blooms occur in both cyclones and mode-water eddies, the biological responses differ. Mode-water eddies can generate extraordinary diatom biomass and primary production at depth, relative to the time series near Bermuda. These blooms are sustained by eddy/wind interactions, which amplify the eddy-induced upwelling. In contrast, eddy/wind interactions dampen eddy-induced upwelling in cyclones. Carbon export inferred from oxygen anomalies in eddy cores is one to three times as much as annual new production for the region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call