Abstract
Past research in environmental hydraulics has established the consideration that small- and large-scale turbulent eddy structures correspond to fast and slow fluctuations within a velocity time series measured at a fixed location. This work embraces this concept and develops an eddy taxonomy methodology to classify the prominent small- and large-scale eddies in the vicinity of an obstacle within a fixed rough bed. The previously documented visual interpretation technique is used in conjunction with a novel technique, which utilizes the statistical skew parameter, to quantify the moving-average time step at which large-scale eddies may be isolated from small-scale eddies. Thereafter, triple decomposition theory is employed and prominent spatial and temporal scales (i.e., integral length scales and periodicity) of small- and large-scale eddies are calculated. The eddy taxonomy methodology is implemented using acoustic Doppler velocimeter time-series measurements captured in the vicinity of an experimental model of a submerged barb obstacle—a hydraulic structure used for bank protection and increasing aquatic diversity. Implementation of the eddy taxonomy methodology using the streamwise velocity (u) time series and streamwise-vertical Reynolds stress (uw) time series provide similar results for the time step necessary to decompose large- from small-scale eddies. Eddy taxonomy results indicate the presence of large-scale, macroturbulent eddies throughout the barb test section with periodicity and length scales that agree with literature reported values. Additionally, small-scale bed derived eddies are most pronounced in the deflected flow regions where the barb obstacle has less influence upon the flow, while multiple small-scale eddies, including ejection, wake, and Kelvin–Helmotz associated eddies, persist in the downstream overtopping and wake regions of the barb obstacle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.