Abstract
This study describes characteristics of eddy (turbulent) heat and salt transports, in the basin‐scale circulation as well as in the embedded mesoscale eddy found in the South China Sea (SCS). We first showed the features of turbulent heat and salt transports in mesoscale eddies using sea level anomaly (SLA) data, in situ hydrographic data, and 375 Argo profiles. We found that the transports were horizontally variable due to asymmetric distributions of temperature and salinity anomalies and that they were vertically correlated with the thermocline and halocline depths in the eddies. An existing barrier layer caused the halocline and eddy salt transport to be relatively shallow. We then analyzed the transports in the basin‐scale circulation using an eddy diffusivity method and the sea surface height data, the Argo profiles, and the climatological hydrographic data. We found that relatively large poleward eddy heat transports occurred to the east of Vietnam (EOV) in summer and to the west of the Luzon Islands (WOL) in winter, while a large equatorward heat transport was located to the west of the Luzon Strait (WLS) in winter. The eddy salt transports were mostly similar to the heat transports but in the equatorward direction due to the fact that the mean salinity in the upper layer in the SCS tended to decrease toward the equator. Using a 21/2‐layer reduced‐gravity model, we conducted a baroclinic instability study and showed that the baroclinic instability was critical to the seasonal variation of eddy kinetic energy (EKE) and thus the eddy transports. EOV, WLS, and WOL were regions with strong baroclinic instability, and, thus, with intensified eddy transports in the SCS. The combined effects of vertical velocity shear, latitude, and stratification determined the intensity of the baroclinic instability, which intensified the eddy transports EOV during summer and WLS and WOL during winter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.