Abstract

AbstractThe relationship between Antarctic Circumpolar Current jets and eddy fluxes in the Indo–western Pacific Southern Ocean (90°–145°E) is investigated using an eddy-resolving model. In this region, transient eddy momentum flux convergence occurs at the latitude of the primary jet core, whereas eddy buoyancy flux is located over a broader region that encompasses the jet and the interjet minimum. In a small sector (120°–144°E) where jets are especially zonal, a spatial and temporal decomposition of the eddy fluxes further reveals that fast eddies act to accelerate the jet with the maximum eddy momentum flux convergence at the jet center, while slow eddies tend to decelerate the zonal current at the interjet minimum. Transformed Eulerian mean (TEM) diagnostics reveals that the eddy momentum contribution accelerates the jets at all model depths, whereas the buoyancy flux contribution decelerates the jets at depths below ~600 m. In ocean sectors where the jets are relatively well defined, there exist jet-scale overturning circulations with sinking motion on the equatorward flank and a rising motion on the poleward flank of the jets. These jet-scale TEM overturning circulations, which are also discernible in potential density coordinates, cannot be attributed to Ekman downwelling because the Ekman vertical velocities are much weaker and their meridional structure shares little resemblance to the rapidly varying jet-scale overturning pattern. Instead, the location and structure of these thermally indirect circulations suggest that they are driven by the eddy momentum flux convergence, much like the Ferrel cell in the atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call