Abstract

In this paper, an eddy current loop coupled with the tunneling magneto resistor (EC-TMR) is used as a displacement sensor to detect the micromotion of an orthopaedic implant. The high sensitivity and signal to noise ratio of the TMR sensor are used to achieve high resolution at a large standoff distance. First, a small three-turn rectangular eddy current loop of dimension 2.5 mm × 10 mm is designed and simulated inside the human body using a full-wave EM simulator. Then, it is fabricated and tested using vector network analyzer. The magnetic tunnel junction stack is optimized and a six-element TMR sensor is fabricated and characterized. The eddy current and tunnelling magneto resistive sensor are integrated and heterodyne detection technique is used to obtain the high-resolution micromotion detection at an extended standoff range. This technique can be used for in-vivo detection of the micromotion of the orthopaedic implant which will be useful in reducing the revision surgeries due to the mechanical failures of the implant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call