Abstract

Electromagnetic finite element methods have been used to identify eddy current sensor designs for monitoring CdTe vertical Bridgman crystal growth. A model system consisting of pairs of silicon cylinders with electrical conductivities similar to those of solid and liquid CdTe has been used to evaluate the multifrequency response of several sensors designed for locating and characterizing the curvature of liquid-solid interfaces during vertical Bridgman growth. At intermediate frequencies (100–800 kHz), the sensor's imaginary impedance monotonically increases as interfacial curvature changes from concave to convex or the interface location moves upwards through the sensor. The experimental data are in excellent agreement with theoretical predictions. At higher test frequencies (∼ 5 MHz), the test circuit's parasitics contribute to the sensor's response. Even so, the predicted trends with interface location/curvature were found to be still preserved, and the experiments confirm that the sensor's high frequency response depends more on interface location and has only a small sensitivity to curvature. Multifrequency data obtained from these types of sensors have the potential to separately discriminate the location and the shape of liquid-solid interfaces during the vertical Bridgman growth of CdTe and other semiconductor materials of higher electrical conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.