Abstract

This paper presents a new approach to the classical method for failure detection with eddy currents. In contrast to traditional methods of measuring reflected impedance on the probe circuit, this paper uses concepts of identification theory to find a transfer function that characterizes the dynamics of the measuring system by eddy currents. The transfer function represents the admittance of the input equivalent circuit. The estimated parameters of the transfer function were used to compute the inductive time constant of equivalent circuit of the metal specimen. The results of the time constant variation of the equivalent circuit of the sample were compared with the equivalent input impedance variation. A preliminary analysis is done in a simple case study, which has shown that the inductive time constant is more sensitive than the reflected impedance on the probe circuit, especially at low frequencies. Moreover, the estimated time constant is independent of the excitation frequency and mutual inductance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.