Abstract

For a permanent magnet machine, temperature rise due to the losses in the rotor can affect the performance of the permanent magnet. This is a critical problem for the designers of electric machine. These losses, especially eddy current losses in the conductive part of the rotor, cause heat which cannot easily be mitigate due to the mechanical structure. Therefore, it is very important to consider the losses in the designing step to ensure that the machine operates stably. The most common technique of reducing the eddy current losses is to divide them into smaller parts. The analysis for this segmentation structure is only possible in 3D-FEM (Finite Element Method) and though this requires a considerable amount of time during design step. Therefore, it is necessary to calculate the eddy current losses rapidly and accurately. In this paper, an eddy current loss analysis method in the retainer of the permanent magnet machine which has a high power density is proposed. First, the concept of effective conductivity is introduced to solve the segmentation problems not to use 3D-FEM. Also, in order to improve the accuracy of the proposed method, the skin effect which occurs in high speed driving region is considered and a FFT analysis is also performed on the harmonic components of air gap flux density. Finally the thermal analysis result which is based on the loss analysis result is also demonstrated and it is verified to compare with the thermal experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.