Abstract

In this study, an eddy current (EC) detector is integrated in an additive/subtractive hybrid manufacturing (ASHM) process. The detector facilitates in-process inspection and repair operations through material deposition, defect detection, and removal processes layer by layer. A feasibility test is carried out on eddy current detection of subsurface defects in additively manufactured parts by using an EC detector. The study compares the results obtained from the EC detection with those by the X-ray computed tomography and the destructive methods. Experiments and simulations are conducted to investigate the effect of excitation frequency on intensity of the eddy current signal. The effects of residual heat of an additively manufactured specimen and lift-off distance of an EC probe on impedance changes are also investigated. In addition, the effect of defect width on EC signal is analyzed. The study shows that the EC method is capable of detecting subsurface defects in the ASHM parts. It is promising to integrate the EC detection and subtractive manufacturing into additive manufacturing to produce parts with improved quality and better performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.