Abstract
This paper presents the use of the Least Square Support Vector Machines (LS-SVM) technique, combined with the Finite Element Method (FEM), to characterize small cracks in order to get a fast non-destructive inspection. The LS-SVM is a statistical learning method that has good generalization capability and learning performance. LS-SVM trained model is proposed to predict crack sizing using experimental signals acquired from an Eddy Current (EC) sensor. The FEM is used to create the data set required to train this model. The performance of LS-SVM model depends on a careful setting of its associated hyper-parameters. Different tuning techniques for optimizing the LS-SVM hyper-parameters are studied: Electromagnetism-Like Mechanism (EM), Opposition Based Electromagnetism-Like Mechanism (OBEM) and Teaching Learning Based Optimization (TLBO). Results show that TLBO algorithm provides a good compromise between accuracy and computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.