Abstract

This paper presents a new method for calculating the braking force of a drum-type eddy current brake with a two-layer structure. The drum-type eddy current brake should have a structure that improves the braking force by applying a material with high conductivity inside the drum because the eddy current loss generated from the drum is used as the braking force. In addition, because the eddy current brake operates at various speeds while braking the vehicle, it is necessary to grasp the braking force according to the speed. Furthermore, because the material of the drum is composed of non-laminated iron having conductivity, the skin effect and the armature reaction phenomenon appear, and the skin depth and the air-gap flux density are different depending on the braking speed. In this paper, the value of the eddy current loss of the eddy current brake with a copper coating inside the drum is newly presented and compared with the finite-element analysis results. In addition, the change in the speed–torque curve according to the conductivity value of the drum and inner coating material are shown. Finally, an experiment was conducted to compare and verify the characteristic curve of the eddy current brake obtained from the newly derived equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.