Abstract
Proton therapy is now recognized as one of the most effective radiation therapy methods for cancers. A proton therapy facility with multiple gantry treatment rooms is under development in HUST (Huazhong University of Science and Technology), which is based on isochronous superconducting cyclotron scheme. In the beam line, the scanning system spreads out the proton beam on the target according to the complex tumour shape by two scanning magnets for horizontal and vertical scanning independently. Since these two magnets are excited by alternating currents and the maximum repetition frequency is up to 100Hz, eddy currents and losses are expected to be significant. Slits are proven to be an effective way to reduce the eddy currents. To evaluate the heat distribution due to eddy losses in the pole end of the scanning magnet, the transient electromagnetic analysis and steady-state thermal analysis are performed. This paper describes design considerations of the scanning system and mainly analyses the eddy current effect of the scanning magnets. Different coil shapes and slit arrangements are simulated and compared to obtain the optimal configuration. The maximum temperatures of two magnets are optimized below 70°C. In addition, the lag effect due to eddy currents is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.