Abstract

Soils derived from hydrothermally altered andesite support unique communities of Sierran conifers (Pinus ponderosa Laws. and P. jeffreyi Grev. and Balf.) amongst sagebrush (Artemisia tridentata Nutt.) vegetation in the western Great Basin. Plants grown in soil derived from hydrothermally altered bedrock had lower growth rates, total biomass, and net photosynthetic rates than plants grown in soil derived from unaltered andesite of the same formation. Total dry mass was 10 to 28% lower for conifers grown in altered soil whereas dry mass of Artemisia tridentata and Bromus tectorum L. was reduced by over 90%. Results from a nutrient amendment experiment indicated that low phosphorus was the dominant limitation in altered soil, and phosphorus-deficiency affected growth primarily by limiting leaf area development rather than direct inhibition of photosynthesis. The proportionately greater reduction of biomass for Artemisia and Bromus grown in altered soil supports our hypothesis that Great Basin vegetation is excluded from altered soil by intolerance to nutrient deficiency. The Sierran conifers growing on this rock type are therefore free of competition for water with Great Basin vegetation and are able to persist in an exceptionally dry climate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.