Abstract

The binding of the dinitrogen molecule to the metal center is the first and crucial step toward dinitrogen activation. Favorable interaction energies are desired by chemists and biochemists to study model complexes in the laboratory. An electrochemically reduced form of a previously isolated sulfur-bridged Ni3S8 complex is inferred to bind N2 at multiple Ni centers, and this bonded N2 undergoes reductive protonation to produce hydrazine (N2H4) as the product in the presence of a proton donor. Density functional theory (DFT) calculations and quantum theory of atoms in molecules (QTAIM) analysis have been carried out to shed light on the nature of N2 binding to an anionic trinuclear Ni3S8 complex. Additionally, energy decomposition analysis with the combination of natural orbital for chemical valence (EDA–NOCV) analysis has been performed to estimate the pairwise interaction energies between the Ni center and the N2 molecule under experimental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call