Abstract

ED27 trophoblast-like cells were prepared from human chorionic villus samples obtained at 9 weeks gestation and have been grown continuously in vitro without phenotypic drift for nearly a decade. These cells express many trophoblast markers, including cytokeratin, placental alkaline phosphatase (PLAP), secretion of 17β-estradiol, and a microvillous apical surface. The ED27 cell line is a useful model system for studies of placental cell biology and has been distributed to laboratories world-wide. However, experiments to investigate their relationship to primary villous cytotrophoblast have shown that these cells do not secrete detectable amounts of human chorionic gonadotropin in culture and, when digested with trypsin, disperse into individual cells. Furthermore, immunocytochemical studies demonstrated that, unlike villous cytotrophoblasts, ED27 cells were immunoreactive with monoclonal antibodies recognizing some HLA Class I antigens. This was not HLA-G, however, as would be expected if these cells originated from extravillous cytotrophoblasts, but rather classical HLA-A, B which is thought not to be expressed by any trophoblast subpopulations. These inconsistencies prompted us to question the authenticity of the continuous cell line as it now exists. Genetic haplotype analysis using the polymerase chain reaction (PCR) revealed that ED27 was genetically identically to the HeLa cell line. Inasmuch as HeLa cells have never been grown in the laboratory (DAK), the only possible origin of HeLa cell contamination of ED27 cells was the WISH cell line, and further PCR analysis revealed that this cell line was also genetically identical to HeLa. Like ED27 cells, HeLa cells and WISH cells synthesized small amounts of estrogen and were found to express PLAP and antigens recognized by the monoclonal antibodies ED822, directed against the syncytiotrophoblast, and J1B5 directed against villous cytotrophoblast. These results point out the need for adherence to rigorous and consistent quality control measures to assure the authenticity of cell lines used as in vitro model systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.