Abstract
BackgroundOsteoporosis is a degenerative skeletal disease essentially caused by bone remodeling disorder. EphrinB2–EphB4 signaling play critical regulatory roles in bone remodeling via communication between osteoclasts and osteoblasts. Eldecalcitol (ED-71), a new vitamin D analog, is a high-potential drug for treating osteoporosis; however, its mechanism has yet to be determined. This study aims to investigate whether EphrinB2-EphB4 signal mediates the process of osteoporosis improved by ED-71. Materials and methodsAn ovariectomized (OVX) rat model was constructed in vivo. ED-71 at 30 ng/kg was orally administered once daily for 8 weeks. Osteoclast activity and EphrinB2-EphB4 expression were evaluated by hematoxylin and eosin staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemical staining. The mRNA levels of oxidation stress factors in the bone tissue were tested by reverse transcription polymerase chain reaction (RT-PCR). An H2O2-stimulated model in vitro was established to simulate the status of osteoporosis. Osteoclastogenesis and associated protein were detected by TRAP staining, F-actin ring formation assay, PCR, and Western blot analysis. EprhrinB2 and EphB4 levels were determined by immunofluorescence, PCR, and Western blot analysis. EprhrinB2 small-interfering RNA knocked down the EprhrinB2 in osteoclasts, and an EphB4 antibody blocked EphB4 in osteoblasts. ResultsED-71 prevented bone loss and decreased the number of osteoclasts in vivo relative to the OVX group. In addition, the bone tissue of OVX rat displayed as an increased level of oxidation stress, which could be inhibited by ED-71. In vitro, in the simulation of osteoporosis with H2O2, ED-71 reversed the increase H2O2-induced oxidative stress. ED-71 then inhibited osteoclastogenesis and osteoclast function, accompanied by increased EphrinB2 expression in osteoclasts. Notably, EphrinB2 knockdown reversed the inhibitory effect of ED-71 on osteoclasts. ED-71 also enhanced EphB4 expression in osteoblasts in vivo and in vitro. Further research showed that ED-71 inhibited osteoclastogenesis in co-culture systems, which was weakened by blocking EphB4 in osteoblasts. ConclusionsED-71 inhibited osteoclastogenesis by enhancing EphrinB2–EphB4 signaling between osteoclasts and osteoblasts, preventing osteoporosis. This theory explains the role of ED-71 in the treatment of osteoporosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.