Abstract

Considering that global awareness for sustainable development has risen to face environmental damages, different building materials have been considered from a mechanical perspective. In this sense, considering the richness of South America regarding its woods, the Guayacan and the Ecuadorian oak timbers have not been previously characterized. The present research has performed mechanical, thermal, and moisture content characterizations to acknowledge the benefits of considering these materials for the building industries. In this sense, Guayacan has been shown to have lower thermal conductivity, making it ideal for thermal insulation; the oak from Manabi showed the best compressive strength; while the oak from El Oro stands with the best tensile strength; and the oak from Loja showed the best modulus of elasticity. On the other hand, all the materials were compared by multicriteria decision methods to select the best, by using the COPRAS method driven by the objective entropy-weighted method, showing that the oak from Loja is the best choice considering the advantage that presents with the modulus of elasticity. In this sense, it is concluded that regarding the mechanical properties, there is not much difference for the compression, bending, and tensile strength; nevertheless, for the modulus of elasticity the oak from Loja stands out, making it a factor to be considered in the selection of a wood for building applications that is corroborated through multicriteria decision methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.