Abstract

The ectromelia virus (ECTV) is a mouse specific Orthopoxvirus that causes lethal infection in some mouse strains. ECTV infection of these mouse strains has been used as a valuable model for understanding the interplay between Orthopoxvirus species and their hosts, including variola virus in humans. Although poxviruses encode numerous proteins required for DNA and RNA synthesis, and are less dependent on host functions than other DNA viruses, a detailed understanding of the host factors required for the replication of poxviruses is lacking. Heat shock protein70 (Hsp70) isoforms have been reported to serve various roles in the replication cycle of numerous viruses. In the present study, microarray and reverse transcription‑quantitative polymerase chain reaction analysis were conducted to investigate the host gene expression profiles following ECTV infection in mice and cell cultures. The results indicated that one Hsp70 isoform, Hsp70 member1B (Hspa1b), was highly upregulated during ECTV infection invitro and invivo. Subsequently, overexpression of Hspa1b protein and small interfering RNA‑mediated gene silencing of Hspa1b revealed that Hspa1b is required for efficient replication of ECTV. Furthermore, the results demonstrated that ECTV replication may be significantly suppressed by two chemical Hspa1b inhibitors: Quercetin and VER155008. In conclusion, the present study clearly demonstrated that ECTV infection upregulates the expression of Hspa1b in order to promote its replication. The dependence on Hsp70 may be used as a novel therapeutic target for the treatment of Orthopoxvirus infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.