Abstract

BackgroundWater deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree.ResultsIn the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in ‘Fuji’ apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm2 in transgenic fruits was less than wild type.ConclusionsAltogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will contribute to apple production, by engineering apples with big fruits via efficient water transportation when well watered and enhanced drought tolerance in transgenic apples under water deficit.

Highlights

  • Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size

  • Our research paves a way to engineer apples with big fruits when well watered and enhanced drought tolerance under water deficit, which will contribute to apple production

  • The results showed that MdPIP1; 3-eGFP was localized on the plasma membrane (Fig. 3a), while the eGFP control was observed throughout whole protoplast (Fig. 3b)

Read more

Summary

Introduction

Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Aquaporins belong to the major intrinsic protein (MIP) family In this large family, many different members are located at most kinds of tissues and cells to participate in different physiological processes including water uptake and transportation, stomatal behavior, fruit development and ripening, and the response to various environmental stressors [1, 8,9,10,11,12,13,14,15,16,17,18,19,20]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call