Abstract

Mesenchymal stromal cells (MSCs) isolated from numerous tissues including human fetal tissue are currently used in cell therapy and regenerative medicine. Among fetal tissues, the umbilical cord (UC) is one of the sources for both MSCs and endothelial cells (ECs). To establish ectopic vascularized bone tissue formation, UC-derived MSCs and ECs were isolated. UC-MSCs expressing human BMP-2 (hBMP-2-MSCs) were generated using an adenoviral system to promote bone formation. These cells were then transplanted with Matrigel into the subcutaneous tissue of an immune deficient NSG mouse, and bone tissue was analyzed after several weeks. The osteogenic differentiation ability of MSCs was elevated by transduction of the hBMP-2 expressing adenoviral system, and vascularization of bone tissue was enhanced by human umbilical vein endothelial cells (HUVEC). In this study, our results provide evidence that MSCs and HUVECs from human umbilical cord are suitable cells to investigate bone tissue engineering. The results also suggest that the co-transplantation of hBMP2-MSCs and HUVECs may be a simple and efficient strategy for improving tissue generation and angiogenesis in bone tissue engineering using stem cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.