Abstract
Tall fescue (Festuca arundinacea Schreb.) is a cool-season perennial grass, which has been conventionally grown in the temperate area. However, as a major type of cool-season turf grass, its growth has been extended to the sub-tropical climate or even to the transitional climate between the sub-tropical and the tropical, and, in some cases, to heavily salinized lands. The extended growth imposes a serious challenge to its tolerance to the abiotic stress, particularly to drought, salt and high temperature. Here, we report a successful introduction of Arabidopsis AtHDG11 into the tall fescue via Agrobacterium-mediated transformation. The ectopic overexpression of AtHDG11 under the control of CaMV 35S promoter with four enhancers resulted in significantly enhanced tolerance to drought and salt stress. No obvious adverse effects on growth and development were observed in the transgenic plants. The enhanced stress tolerance was associated with a more extensive root system, a lower level of malondialdehyde, a nearly normal Na(+)/K(+) ratio, a higher level of proline and a kinetically accelerated induction of SOD and CAT activities observed in the transgenic plants during drought and/or salt stress, indicating that an enhanced ROS scavenging capability might play a significant role in the acquired tolerance to the abiotic stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.